
MARCH–APRIL 1999 1

by using what we called an object-based
style.1 Since then, C++ has acquired a
good standard; quality compilers are
widely available, and expression-tem-
plate technology has improved its per-
formance to Fortran 95 levels.2 Mixed-
language programming on large
projects is now common, and we want
to interface these two powerful lan-
guages without losing their power by
reducing ourselves to least-common-
denominator features.

Ideally, we want to automatically
interface C++ and Fortran 95 code,
with either language playing the role of
main and with user-defined types from
one language available in the other. We
envision something like Figure
1, where the behavior of an ob-
ject in language X is exported to
language Y by a flat physical in-
terface consisting of intrinsic
types or simple (1D) arrays of
those types, and the object’s
identity and state is exported to
Y by a shadow object, which
presents a logical interface. In
the following sections, we de-
scribe how to physically inter-
face C++ and Fortran 95, how
to logically interface them, and

what this means for their in scientific
programming.

Physically interfacing C++ and
Fortran 95
To physically interface C++ and For-
tran 95 we must:

• Name unmangle: ensure that proce-
dure names are visible and sensible
across the language interface.

• Flatten: reduce procedure arguments
to the common set of built-in types
available in both languages

• Initialize: ensure that the proper
code initialization takes place in both
languages

Name unmangling. Both C++ and
Fortran 95 mangle procedure names.
C++ mangles all procedure names and
Fortran 95 mangles all module proce-
dure names, both in a compiler-de-
pendent fashion. C++ provides the ex-
tern “C” construct to interface with
C code, which (almost) does not man-
gle names. Similarly, Fortran 95 sup-
ports the external-procedure construct
that (almost) does not mangle names.
The physical interface in C++ must
therefore consist of a set of extern
“C” procedures. Likewise, the physical
interface in Fortran 95 must consist of
external procedures.

Actually, even the names of extern
“C” procedures in C++ and external pro-
cedure in Fortran 95 are mangled; the
procedure names entered into the sym-
bol table might have their case modified
and an underscore appended or pre-
pended according to compiler-depen-
dent rules. The convention a particular
compiler uses is easy to discern: simply

compile the code and use nm to
examine the symbol table.
Various schemes4,5 to auto-
matically generate the appro-
priate names are available. For
simplicity here, we manually
write the interface routines
with the appropriate case and
underscores for one particu-
lar Fortran 95 name-man-
gling scheme.

Flattening. Interfacing
through nonmember func-

SHADOW-OBJECT INTERFACE BETWEEN FORTRAN 95 AND C++
Mark G. Gray, Randy M. Roberts, and Tom M. Evans

W E ARE OBJECT-ORIENTED ENTHUSIASTS. WHILE OUR

PREFERRED LANGUAGE IS C++, MANY OF OUR COL-

LEAGUES PREFER FORTRAN 95. PREVIOUSLY IN COMPUTERS IN PHYSICS,

WE EXPLAINED HOW TO GET THE MOST OUT OF FORTRAN 95

Real object Flat interface Shadow object

Language X Language Y

Figure 1. The interface between X and Y. An object in lan-
guage X is physically interfaced to language Y through a
flat interface. A shadow object in Y uses the physical inter-
face to provide a logical interface.

Editor: Paul F. Dubois, dubois1@llnl.gov

S C I E N T I F I C  P R O G R A M M I N G



tions (in C++) or external procedures (in
Fortran 95) is also necessary for inter-
face flattening. In addition, flattening
requires that the procedure parameter
list contain only the common types in-
trinsic to both languages, or simple (1D)
arrays of those types. Of course, the in-
ternal representation of those types
must match across the language barrier
for the interpretation to be successful.
Fortunately, almost all modern compil-
ers use the IEEE standard representa-
tion for its intrinsic types.

For most platforms, the following
intrinsic types match between Fortran
95 and C++:

type C++ Fortran 95
Integer long integer
Real double real
Character char character

Because Fortran 95 passes all argu-
ments by reference, we restrict all the
arguments on the C++ side to refer-
ences (or pointers) of these types.

Although this list seems rather re-
strictive for the modern language user,
much useful work has been done in For-
tran 77 using only these types. Further,
other intrinsic types could be used (such
as Fortran logical), with the appro-
priate translation. As we shall see, the
logical interfacing techniques to come

will permit the use of user-defined types
constructed from these basic types.

Initialization. Initialization of sta-
tic and const objects is a major -
obstacle when interfacing C++ and
Fortran 95. A code with a C++ main
initializes const and static data be-
fore main is executed. (The C++ stan-
dard stipulates that this condition is not
binding; function-scope objects can be
instantiated when first encountered); a
code with a Fortran 95 main will prob-
ably not initialize this data. This prob-
lem is especially acute for libraries that
contain const or static variables
with namespace or class scope.6

We can solve the initialization prob-
lem most elegantly by using shared li-
braries. ELF based shared-library im-
plementations automatically initialize
themselves correctly.7 We take advan-
tage of this by compiling all foreign
language code into a shared library.
The shared library takes care of the ini-
tialization. This works on Linux, Sun,
and SGI platforms, but does not work
on IBM platforms (an alternative ap-
proach would be to use a, perhaps
dummy, C++ main routine).

2 COMPUTING IN SCIENCE & ENGINEERING

// Declaration of foo (the real class)

#ifndef FOO_H 
#define FOO_H

class foo // C++ real class 
{
public: 

foo(); // build foo 
int get(); // return member data value 
void set(int j); // set member data
~foo(); // destroy foo 

private: 
int i; // member data

};

#endif

Figure 2. C++ class header. We wish to create a flat physical interface to this class’s
member functions so they can be invoked from Fortran 95, and a logical interface to
this class’s objects so they can be shadowed in Fortran 95.

S C I E N T I F I C  P R O G R A M M I N G

Mark G. Gray is a physicist in the Transport Methods Group at Los Alamos National Laboratory.

//Author: Please briefly list your research interests, education (with de-

grees, majors, & schools), a career highlight, and your professional mem-

berships.// Contact him at Los Alamos National Lab, Los Alamos, NM 87545;

gray@lanl.gov; http://laws.lanl.gov:80/~gray.

Randy M. Roberts is a physicist in the Transport Methods Group. His research interests include

radiation/neutron transport, thermodynamics, fluid mechanics, electromag-

netic wave propagation, underwater acoustics, and surface physics. He has a

BS in physics from the University of Maryland and  a PhD in physics from the

University of Texas. He is a member of the American Physical Society. Con-

tact him at rsqrd@lanl.gov; http://www.xdiv.lanl.gov/~rsqrd.

Tom M. Evans is a physicist in the Transport Methods Group. His research interests include hy-

brid deterministic/Monte Carlo transport, radiative transfer, charged-particle

physics, and radiation detection. He has a BS in physics and astronomy from

Haverford, and an MS in health physics and a PhD in nuclear engineering,

both from the Georgia Institute of Technology. He is a member of the Amer-

ican Association of Physicists in Medicine, the American Institute of Physics,

and the American Nuclear Society. Contact him at tme@lanl.gov;

http://laws.lanl.gov:80XTM/tme.



MARCH–APRIL 1999 3

Logically Interfacing C++ to
Fortran 95
To logically interface C++ to Fortran
95, we want an object defined and im-
plemented in one language to appear as

a natural object in the other language.
Specifically, we want to

• Mirror C++ objects with Fortran 95
objects

• Mirror Fortran 95 objects with C++
objects

Fortran 95 shadow of C++ Ob-
jects. Consider the C++ class header

Café Dubois 

POOMA II
The Café is buzzing today with news from Scott Haney about a
release by Los Alamos National Laboratory’s Advanced Com-
puting Laboratory (ACL) of several C++ software packages.
These packages are available free for noncommercial use and
can be downloaded from http://www.acl. lanl.gov/software.

Former Computers in Physics readers might recall the “Sci-
entific Programming” department in last year’s September-
October issue about the ACL’s Parallel Object-Oriented
Methods and Applications (POOMA) framework. A new re-
lease, POOMA 2.0, is now available. 

Scott is very enthusiastic about the new ideas in POOMA
II. POOMA II has a flexible array class that supports a plug-in
engine architecture to achieve representation independence.
It includes a powerful system for specifying and combining
domains to construct views of arrays. These views are arrays,
so they can be used anywhere an array is expected. Using a
novel expression-engine abstraction, array expressions in
POOMA II are also first-class arrays.  

POOMA hides the details of parallel computation in a flexi-
ble evaluator architecture. For the user, this means that a pro-
gram can be written in a highly abstract data-parallel form,
tested and debugged in serial mode, and then run in parallel
with very little effort. In the future, POOMA will support
cross-box parallelism using MPI, fields, particles, automatic
boundary conditions, and flexible geometry and meshes.

The ACL website contains descriptions and contact infor-
mation for several more projects at the ACL. Here are brief
descriptions of some of them. 

• PAWS (The Parallel Application Work Space) provides a frame-
work for coupling parallel applications using high-speed par-
allel-communication channels. The coupled applications can
be running on heterogeneous machines, and the data struc-
tures in each coupled component can have different parallel
distributions. 

• SILOON (Scripting Interface Languages for Object-Oriented
Numerics) lets scientists rapidly prototype and solve problems
on high-performance parallel computers. SILOON lets scien-
tists and other application programmers easily access existing
object-oriented scientific frameworks and numerical libraries
written in C, C++, and Fortran.

• SMARTS (Shared Memory Asynchronous Runtime System)
supports integrated task and data parallelism for MIMD ar-

chitectures with deep memory hierarchies. 
• TAU (Tuning and Analysis Utilities) is a toolset that lets users an-

alyze the performance of parallel-application programs. TAU
collects much more information than is available through prof
or gprof, the standard Unix utilities.

The Python Journal
The Python Journal is online at http://www.pythonjournal.com/.
The first issue featured an interview by Paul Everitt of Infoseek,
a report on XML by Andrew Kuchling, and an article on Py-
thon as a rapid prototyping language by Sean Reifschneider.
Regular features will include an Algorithms column by Andrew
Kuchling, and a “From the Trenches” column by Sean Reif-
schneider. The Python website is http://www.python.org.

Numerical linear algebra for high-performance computers
Jack Dongarra, Iain Duff, Danny Sorensen, and Henk van der
Vorst have a new book out, Numerical Linear Algebra for
High-Performance Computers (SIAM, ISBN 0-89871-428-1).
Topics include major elements of advanced-architecture
computers and their performance, recent algorithmic devel-
opment, and software for direct solution of dense matrix
problems, direct solution of sparse systems of equations, it-
erative solution of sparse systems of equations, and solution
of large sparse-eigenvalue problems. 



4 COMPUTING IN SCIENCE & ENGINEERING

shown in Figure 2. To shadow this C++
class in Fortran 95, we must first export
a flat interface that can negotiate the
physical language barrier.

To flatten the interface, the implicit
this pointer present in every member
function call must be made explicit and
representable by one of the allowable
common types. One nonportable way
of associating a pointer with an intrin-
sic type is to cast the pointer to a long,
which can be passed as an integer to
Fortran 95. We reject this option; we
would like to keep the unavoidable
portability issues isolated at the physi-
cal interface level.

A guiding principle of object-oriented
thinking is that the solution to a prob-
lem lies in the creation of the appropri-
ate class. Here the solution would be a
class that associates an opaque pointer,8,9

a variable of an allowable type (the
opaque_pointer_type could be, for
example, long), with the actual object.

Figure 3 shows the the Design by
Contract10 requirements for an opaque-
pointer class. This specification is tem-
plated on the type; each class-member
function is specified by its signature, al-
lowable inputs (the assert statements
commented with REQUIRE), and ac-
ceptable output (the assert statements
commented with ENSURE). Our actual
implementation uses the STL map class.

The C++ code in Figure 4 exports
the member functions to a flat C++ in-
terface. This physical interface

• uses extern “C” to ensure name un-
mangling; appends an underscore
and uses lowercase in keeping with
the particular C++ and Fortran 95
compiler requirements,

• uses a long opaque pointer managed
by the opaque_pointers<foo> class
to flatten the user-defined type to one
of the allowable intrinsic types, and

• is compiled together with the C++

S C I E N T I F I C  P R O G R A M M I N G

This file should be generated automagically from foo.hh

#include “foo.hh” 

#include “opaque_pointers.hh” // opaque pointers template

extern “C” { // external interface to F95

void construct_foo_(long &self) 

{

foo *t = new foo(); // construct foo 

self = opaque_pointers<foo>::insert(t); // get opaque pointer

}

void set_foo_(long &self, int &i)

{

foo *t = opaque_pointers<foo>::item(self); // get foo pointer 

t->set(i); // dispatch call

}

void get_foo_(long &self, int &i) 

{

foo *t = opaque_pointers<foo>::item(self); // get foo pointer 

i = t->get(); // dispatch call

}

void destruct_foo_(long &self) 

{

foo *t = opaque_pointers<foo>::item(self); // get foo pointer 

delete t; // destroy foo

opaque_pointers<foo>::erase(self); // remove opaque pointer

} 

// prepended underscores

} // for these particular 

// compilers

Figure 4. C++ flat interface. Member functions of class foo are dispatched from C
functions using only intrinsic types.

template <class T> 

opaque_pointer_type opaque_pointers<T>::insert(T *t) 

// add t to list, return associated opaque pointer self

assert(!opaque_pointers<T>::is_full()); // REQUIRE

assert(t == opaque_pointers<T>::item(self)); // ENSURE

template <class T> 

bool opaque_pointers<T>::is_full() 

// is there no more room?

template <class T> 

T *opaque_pointers<T>::item(opaque_pointer_type self) 

// convert opaque pointer to real pointer 

assert(opaque_pointers<T>::has(self)); // ENSURE

template <class T> 

bool opaque_pointers<T>::has(opaque_pointertype self) 

// is self associated?

template <class T> 

void opaque_pointers<T>::erase(opaque_pointer_type_self) 

// remove pointer referenced by opaque pointer self

assert(opaque_pointers<T>::has(self)); // REQUIRE

assert(!opaque_pointers<T>::has(self)); // ENSURE

Figure 3. C++ opaque pointer specification. The opaque pointer class holds point-
ers to type T and associates each with an opaque_pointer_type index self.
Any implementation that conforms to this specification is suitable for flattening
the interface.



MARCH–APRIL 1999 5

class code in a shared library for au-
tomatic initialization

This flat-interface representation of
the C++ class is precisely that described
by James Rumbaugh and his col-
leagues11 for object-based program-
ming in Fortran 77. The object identity
is specified by the opaque pointer
self; the address of the actual object is
retrieved by indexing the opaque_
pointers<foo> class; functionality is
retrieved by dispatching member func-
tions from that pointer. With this flat
interface, the C++ class foo could be
used from C++, Fortran 77, or any pro-
cedural language.

Of course, this interface is not type
safe; any integer value could be used as
the self argument, with disastrous re-
sults. Because our Fortran 95 classes are
type safe, part of the desire for a logical
interface is the recovery of type safety.

Because the flat interface follows the
same format as our Fortran 95 class
module-procedure interface,1 it is thus
eminently suitable for use with our
Fortran 95 class structure.

The Fortran 95 code in Figures 5
and 6 uses this interface to create a
shadow class. Here we first recover type
safety by encapsulating the opaque
pointer this inside a Fortran 95 user-
defined type. Each flat-interface func-
tion is likewise encapsulated in a For-
tran 95 module procedure. The
foo_class module defines a Fortran
95 class that shadows the C++ foo class;
variables of type foo in the Fortran 95
code use the identity, state, and behav-
ior of a C++ foo object.

C++ shadow of Fortran 95 ob-
jects. Consider the Fortran 95 class
shown in Figure 7. To shadow this For-
tran 95 class in C++, we must first ex-
port a flat interface that can negotiate
the physical language barrier.

! see previous figure 
contains

subroutine foo_construct(self) 
type(foo), intent(inout) :: self

call construct_foo(self%this) ! construct C++ object

end subroutine foo_construct

subroutine foo_set(self, i) 
type(foo), intent(inout) :: self 
integer, intent(in) :: i

call set_foo(self%this, i) ! dispatch this->set(i)

end subroutine foo_set

function foo_get(self) result(i) 
type(foo), intent(in) :: self 
integer :: i

call get_foo(self%this, i) ! dispatch this->get()

end function foo_get

subroutine foo-destruct(self) 
type(foo), intent(inout) :: self

call destruct_foo(self%this) ! destroy C++ object

end subroutine foo_destruct

end module foo_class

Figure 6. Fortran 95 shadow class implementation. Module procedures of the
Fortran 95 foo class use the opaque pointer this to dispatch commands
through the flat interface to the member functions of the C++ foo class.

! This file should be generated automagically from foo.hh

module fooclass 
! Definition of foo_class (the shadow class) 
implicit none 
private

public :: construct, get, set, destruct

type, public :: foo ! F95 shadow class 
private 
integer :: this ! opaque pointer to C++ object 

end type foo

interface construct ! build foo 
module procedure foo_construct 

end interface

interface get ! return component data value 
module procedure foo_get 

end interface

interface set ! set component data 
module procedure foo_set 

end interface

interface destruct ! destroy foo 
module procedure foo_destruct 

end interface 
! see following figure

Figure 5. Fortran 95 shadow class interface. The opaque pointer to the C++ object is
stored in the this component..



6 COMPUTING IN SCIENCE & ENGINEERING

To flatten the interface, the explicit
self argument present in every mod-
ule procedure must be converted to
one of the allowable common types.
Because standard Fortran 95 does not
give the user access to object addresses,
casting the address to an integer is not
an option. We must use an opaque
pointer class.

Figure 8 shows the the Design by
Contract requirements for an opaque
pointer class. This specification is
templatized on the type, $1; each sub-
routine is specified by its signature, al-
lowable inputs (the REQUIRE state-
ments) and acceptable output (the
ENSURE statements). Our actual im-
plementation uses the m4 preproces-
sor to define a macro that produces
working code based on a fixed array of
pointers.

Given any reasonable implementa-
tion of these requirements, the Fortran
95 code in Figure 9 exports the module
procedures to a flat Fortran 77 inter-
face. This physical interface:

• Uses external procedures to ensure
name unmangling

• Uses an integer opaque pointer man-
aged by the bar_opaque_ point-
ers class to flatten the user-defined
type to one of the allowable intrinsic
types

• Is compiled together with the For-
tran 95 class code in a shared library
for automatic initialization

This flat-interface representation of
the Fortran 95 class mimics what was
done for the flat C++ interface. The
object identity is specified by the
opaque pointer this argument; a real
pointer to the actual object is retrieved
from the bar_opaque_pointer class;
functionality is retrieved by dispatch-
ing method procedures with that
pointer as first argument. With this

S C I E N T I F I C  P R O G R A M M I N G

function $1_opaque_pointers_insert(x) result(this) 
! add x to list, return associated opaque pointer this 
type($1), pointer :: x 
integer :: this 
REQUIRE(.not. $1_opaque_pointers_full()) 
ENSURE(x == $1_opaque_pointers_item(this))

function $1_opaque_pointers_full() result(l) 
! is there no more room? 
logical :: l

function $1_opaque_pointers_item(this) result(s) 
! convert opaque pointer to real pointer 
integer, intent(in) :: this 
type($1), pointer :: s 
REQUIRE($1_opaque_pointers_has(this))

function $1_opaque_pointers_has(this) result(l) 
! is this associated? 
integer, intent(in) :: this 
logical :: l

subroutine $1_opaque_pointers_erase(this) 
! remove pointer referenced by opaque pointer this 
integer, intent(in) :: this 
REQUIRE($1_opaque_pointers_has(this))
ENSURE(.not. $1_opaque_pointers_has(this))

Figure 8. Fortran 95 opaque pointer specification. The opaque pointer class holds
pointers to type $1 and associates each with an integer index this. Any implemen-
tation that conforms to this specification is suitable for flattening the interface.

Figure 7. Fortran 95 class interface. We wish to create a flat physical interface to this
class’s module procedures so they can be invoked from C++, and a logical interface
to this class’s objects so they can be shadowed in C++.

module bar_class 
! Definition of bar (the real class) 
implicit none 
private 
public :: construct, get, set, destruct

type, public :: bar ! F95 class 
private 
integer i ! component data 

end type bar

interface construct 
module procedure bar_construct !(self) 

! build bar 
! type(bar), intent(inout) :: self 

end interface

interface get 
module procedure bar_get !(self) result(i) 

! return component data value 
! type(bar), intent(inout) :: self 
! integer :: i 

end interface

interface set 
module procedure bar_set !(self, j) 

! set component data 
! type(bar), intent(inout) :: self 
! integer :: j 

end interface

interface destruct 
module procedure bar_destruct !(self) 

! destroy bar 
! type(bar), intent(inout) :: self 

end interface

contains
! Implementation omitted

end module bar_class



MARCH–APRIL 1999 7

flat interface the Fortran 95 class bar
could be used from Fortran 77, C++,
or any procedural language.

As with the C++ flat interface, this
Fortran 95 interface is not type safe; as
with the C++ flat interface we will pro-

vide a shadow class to recover type
safety in the logical interface.

For this flat interface we can write
the C++ shadow class header in Figure
10 with the implementation shown in
Figure 11.

Here we first recover type safety by
encapsulating the opaque pointer self
inside a C++ class. Each function of
the flat interface is likewise encapsu-
lated in a C++ member function. The
bar class defines a C++ class that shad-
ows the Fortran 95 bar class; variables
of type bar in the C++ code use the
identity, state, and behavior of a For-
tran 95 bar object.

We have presented techniques for
shadowing C++ classes in For-

tran 95 and vice versa. These tech-
niques permit the export of classes in
one language to the other, without sac-
rificing abstraction or type safety. Fur-
thermore, these techniques are highly
automatable; a script could easily read
the C++ class header and construct the
code necessary for the Fortran 95
shadow class, or read the Fortran 95
class module and construct the C++
shadow class.

In the process, we have created flat
interfaces to objects in both languages
that can be used for Fortran 77, C++,
or any similar language.

These shadow ideas can be extended
to any argument types as well; ulti-
mately, we see no reason why entire
component libraries cannot be shad-
owed. This permits a programmer to
use the best programming language for
the task at hand.

! This class should be generated automagically from bar_class.f95

INCLUDE([opaque_pointer_class.fm4]) ! m4 macros to make a 
OP([bar]) ! bar_opaque_pointers class

subroutine bar_construct(this) 
use bar_class 
use bar_opaque_pointers_class 
integer, intent(inout) :: this 
type(bar), pointer :: t 
allocate(t); call construct(t) ! construct bar 
this = bar_opaque_pointers_insert(t) ! get opaque pointer 

end subroutine bar_construct

subroutine bar_get(this, i) 
use bar_class 
use bar_opaque_pointers_class 
integer, intent(in) :: this 
integer, intent(out) :: i 
type(bar), pointer :: s 
s => bar_opaque_pointers_item(this) ! get bar pointer 
i = get(s) ! dispatch call 

end subroutine bar_get

subroutine bar_set(this, j) 
use bar_class 
use bar_opaque_pointers_class 
integer, intent(inout) :: this 
integer, intent(in) :: j 
type(bar), pointer :: s 
s => bar_opaque_pointers_item(this) ! get bar pointer 
call set(s, j) ! dispatch call 

end subroutine bar_set

subroutine bar_destruct(this)
use bar_class 
use bar_opaque_pointers_class 
integer, intent(inout) :: this 
type(bar), pointer :: t 
t => bar_opaque_pointers_item(this) ! get bar pointer 
call destruct(t); deallocate(t) ! destroy bar 
call bar_opaque_pointers_erase(this) ! remove opaque pointer 

end subroutine bar_destruct

Figure 9. Fortran 95 flat interface. Module procedures of class bar are dispatched
from Fortran 77 functions using only intrinsic types.

// this file should be generated automagically from bar_class.f95

// Declaration of bar (the shadow class)

#ifndef BAR_HH 
#define BAR_HH

class bar // C++ shadow class 
{
public: 

bar(); // build bar 
int get(); // return member data value 
void set(int j); // set member data 
~bar(); // destroy bar 

private: 
long self; // opaque pointer to F95 object

};

#endif

Figure 10. C++ shadow class header. The opaque pointer to the Fortran 95 object is
stored in the self member data.



8 COMPUTING IN SCIENCE & ENGINEERING

References

1. M.G. Gray and R.M. Roberts, “Object-Based
Programming in Fortran 90,” Computers in
Physics, Vol. 11, No. 4, 1997, p. 355.

2. A.D. Robison, “C++ Gets Faster for Scientific
Computing,” Computers in Physics, Vol. 10,
No. 5, 1996, p. 458.

3. G. Furnish, Disambiguated Glommable Ex-
pression Templates,” Computers in Physics,
Vol. 11, No. 3, 1997, p. 263

4. M.J. LeBrun, G. Furnish, and T. Richardson,
The PLPLOT Programmer’s Refererence Manual,
IFSR No. 538, Univ. of Texas, Austin, Tex,
1994.

5. B.D. Burow, “Mixed Language Program-
ming,” Conf. High-Energy Physics CHEP95,
18–22 Sept. 1995; http://www.hep.net/con-

ferences/chep95/html/abstract/abs_69.htm.

6. International Standard Programming Lan-
guages—C++, ISO/IEC 14882, Am. Nat’l
Standards Inst., Information Technology In-
dustry Council, New York, 1998, S 3.6.2 and
S 6.7 P 4.

7. Solaris 2.6 Software Developer Collection Vol.
1—Linker and Libraries Guide, Sun Microsys-
tems, 1997, http://docs.sun.com.

8. J. Lakos, Large-Scale C Software Design, Addi-
son-Wesley, Reading, Mass., 1996.

9. J.O. Coplien, Advanced C++ Programming
Styles and Idioms, Addison-Wesley, 1994.

10. Design by Contract, Interactive Software Engi-
neering, ISE Building 270 Storke Rd., Goleta,
Calif; http://www.eiffel.com/

11. J. Rumbaugh et al., Object-Oriented Modeling
and Design, Prentice-Hall, New York, 1991.

S C I E N T I F I C  P R O G R A M M I N G

// This file should be generated automagically from bar_class.f95

// Definition of bar (the shadow class)

#include “bar.hh”

extern “C” { //external interface to F95

void bar_construct(long &self);

void bar_set(long &self, int &i);

void bar_get(long &self, int &i);

void bar_destruct(long &self);

} // prepended underscores for 
// these particular compilers 

bar::bar() 
{

bar_construct_(self); // construct f95 object, 
// return opaque pointer

}

int bar::get() 
{

int i;

bar_get_(self, i); // dispatch i = get(self) 
return i;

}

void bar::set(int j) 
{

bar_set_(self, j); // dispatch call set(self, j)
}

bar:: bar()
{bar_destruct_(self); // destroy f95 object}

Figure 11. C++ shadow class implementation. Member functions of the C++ bar class
use the opaque pointer self to dispatch commands through the flat interface to
the module procedures of the Fortran 95 bar class.

FILL
GOES
HERE


